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Abstract. We define bileptons to be bosons coupling to a pair of leptons and construct the most general
dimension four lagrangian involving scalar and vector bileptons. We concentrate on fields with lepton
number 2, and derive model independent bounds on their masses and couplings from low-energy data. In
addition, we study their signals in high-energy experiments and forecast the discovery potential of future
colliders.

1 Introduction

The standard model of strong and electroweak interac-
tions describes present data very successfully. However, it
is commonly believed that it is not the end of the story:
grand unified theories appeal to our craving for elegance,
and naturalness arguments lead many theorists to believe
that there should be some new physics lurking at the TeV
scale. However, opinions differ on how to extend the stan-
dard model.

One of the peculiar features of the standard model is
that none of its bosons carry global quantum numbers;
only the fermions carry baryon or lepton number. This
is no longer the case in most popular extensions. For in-
stance, the scalar spartners in the supersymmetric stan-
dard model carry the same baryon or lepton number as
their associated fermions. Grand unified theories, techni-
colour, and compositeness scenarios often predict the exis-
tence of light leptoquarks, di- or bileptons, and diquarks.
These scalar or vector bosons respectively have baryon
and/or lepton number conserving couplings to a lepton
and a quark, two leptons, or two quarks.

We define a bilepton to be a boson which couples min-
imally (i.e., with dimension four interactions) to two stan-
dard model leptons (we do not include right-handed neu-
trinos), but not to quarks. These particles can carry lepton
number L = 0 or 2. They have previously shared the name
“dilepton” with events having two final state leptons; to
reduce confusion, we call these particles “bileptons”, fol-
lowing Frampton [1]. We shall concentrate here on the
L = 2 bileptons (i.e., those which carry two units of lep-
ton number L), since the L = 0 bileptons have very similar
properties to the familiar standard model bosons.

Our aim is to provide a general and exhaustive classifi-
cation of bileptons, along the same lines as the leptoquark
classification performed ten years ago by Buchmüller,
Rückl and Wyler [2]. Moreover, similarly to what has
been done previously for leptoquarks [3], we intend to list

the present bounds on bileptons that can be calculated
from low-energy physics and from LEP, and to explore
bounds on bileptons from future high-energy experiments.
We mainly deal with discovery limits and will not dwell on
the issue of uniquely determining the quantum numbers
of the bileptons.

Bileptons are present in many extensions of the stan-
dard model. Scalars appear in models that generate neu-
trino majorana masses (see, for instance, [4–7]), and in
various theories with enlarged Higgs sectors (such as left-
right models [8–10]). Massive gauge bileptons may appear
when the standard model is embedded in a larger gauge
group [11–14], and non-gauge vectors can appear in com-
posite and technicolour theories [15].

Various authors have previously studied constraints
on bileptons. The low-energy bounds were computed in
a model independent way in [16–18]. Constraints and pos-
sible collider signals for specific models have been calcu-
lated in [19–43]. More recently, the bounds on new physics
following from the improved τ data have been calculated
[44]. In this paper, we catalogue the low- and high-energy
constraints in as complete and model independent a way
as possible. We also present the bounds assuming three
representative models for the generation structure of the
bilepton-fermion-fermion coupling.

This work is divided into three parts. First, we write
down a rather general class of bilepton lagrangians, which
encompasses our definition of bosons which couple min-
imally to leptons but not to quarks. We then derive the
present low-energy bounds on the bilepton couplings and
masses. Finally, we compute the limits set by LEP1 and
predict the bilepton coupling and mass ranges which fu-
ture high-energy experiments can cover.
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2 Lagrangians

In this section, we construct the most general lepton num-
ber conserving renormalisable lagrangian, consistent with
electroweak symmetry, that involves standard model
gauge bosons, leptons and the scalar or vector bileptons.
The bilepton-lepton-lepton couplings, which we do not re-
quire to conserve lepton flavour, are free parameters. They
may be very small, in which case bileptons would have lit-
tle effect on low-energy data. However, the lowest dimen-
sional couplings to the photon and Z0 are always finite
and sizable, so bileptons within the kinematically allowed
mass range can always be produced at colliders.

2.1 Interactions with leptons

We consider the most general SU(2)L ⊗ U(1)Y invariant
dimension four lagrangian coupling bosons to two leptons.
We require the interactions to conserve lepton number,
but not lepton family number. We separate the lagrangian
into a part involving L = 0 bileptons, and a part involving
L = 2 bileptons:

LL=0 = g1 ¯̀γµ`L
µ
1 + g̃1ēγµeL̃

µ
1 (1)

+ g̃2 ¯̀eL2 + h.c.
+ g3 ¯̀γµσ` · Lµ

3

LL=2 = λ1 ¯̀ciσ2`L1 + h.c. + λ̃1ē
ceL̃1 + h.c. (2)

+ λ2 ¯̀cγµeL
µ
2 + h.c.

+ λ3 ¯̀ciσ2σ` · L3 + h.c. .

We have used the notation where ` = (eL, νL) are left-
handed SU(2)L lepton doublets and e = eR are right-
handed charged singlet leptons. The flavour indices are
suppressed. The charge conjugate fields in LL=2 are de-
fined to be ¯̀c = (`c)†γo = −`TC−1. The subscript of the
bilepton fields L1,2,3 indicates their SU(2)L singlet, dou-
blet or triplet nature, and the σs are the Pauli matrices.
The vector bileptons also carry the Lorentz index µ. We
list the quantum numbers of the bileptons in Table 2.1.

In principle derivative couplings could also be consid-
ered. However, these higher dimensional operators would
be suppressed below the bilepton mass scale. We therefore
concentrate on the minimal lagrangians (1, 2).

The L = 0 bileptons are familiar fields, as they re-
semble the electroweak gauge vectors and the neutral and
charged Higgs scalars. Particles of this type have been of
great interest in particle phenomenology during the past
decades, and many publications have already been de-
voted to this topic. In addition, there is no compelling rea-
son to prevent these fields from also coupling to quarks1,

1 Three of the four L = 2 multiplets contain a doubly-
charged element, which can not couple to ordinary quarks.
Furthermore, if the L = 2 bileptons also interact with quarks
of the first generation, they could mediate fast proton decay

so we do not consider the L = 0 bileptons any further
here.

We rewrite the lagrangian for the L = 2 bileptons (2),
which are the ones we wish to study, with explicit electron
e and neutrino ν fields, their flavour indices (i, j = 1, 2, 3)
and the helicity projectors PR/L = 1/2(1±γ5) . The bilep-
ton superscript is its electric charge:

LL=2 = −λij
1 L+

1

(
ēc
iPLνj − ēc

jPLνi

)
(3)

+λ̃ij
1 L̃++

1 ēc
iPRej

+λij
2 L+

2µ ν̄c
i γ

µPRej

+λij
2 L++

2µ ēc
iγ

µPRej

+
√

2λij
3 L0

3 ν̄c
iPLνj

−λij
3 L+

3

(
ēc
iPLνj + ēc

jPLνi

)
−

√
2λij

3 L++
3 ēc

iPLej

+ h.c. .

If the scalar L3 acquires a vacuum expectation value
it becomes the familiar L = 2 triplet that appears in
left-right symmetric models and in the Gelmini-Roncadelli
majoron model. In this case, L−−

3 is then the well-studied
doubly-charged Higgs [45] and couples to a pair of like-sign
W bosons via the lepton number violating vacuum expec-
tation value. These doubly-charged Higgs bosons can be
singly produced viaW fusion in hadron collisions [46]. Un-
fortunately, the production rates at LHC are so low that
only masses up to 1.2 TeV can be probed [47]. In any
case, the triplet vacuum expectation value is generically
required to be small because of the smallness of ρ− 1, so
we will assume here that it is zero.

2.2 Leptonic couplings matrices

It is clear from the lagrangian (3) that the coupling matrix
for L1 is antisymmetric in flavour space, whereas L̃1 and
L3 have flavour symmetric couplings. The isosinglet L1
corresponds to the antisymmetric part of the cross product
of two doublets, and the triplet L3 to the symmetric part.
In contrast, the vector L2 can have an arbitrary 3 × 3
coupling matrix. For simplicity, we will assume that all
the coupling constant matrices are real. This means we
are neglecting CP violation, and our bounds are really
constraints on |λ| rather than λ. Constraints from CP
violation were included in the analysis of [16–18].

The aim of this paper is to discuss bileptons in a model
independent way. We will list the low-energy constraints
that we derive in Sect. 2 without making assumptions
about the structure of the coupling matrices λ (except in
the case of µ → eγ, see Sect. 3.1.4). However, most of the
low-energy constraints arise from the non-observation of
flavour violation induced by off-diagonal matrix elements.
This makes the model-independent bounds difficult to in-
terpret (see Tables 3 and 4 in Sect. 3.4). We will therefore
also list the low-energy bounds using three representative
models of coupling matrices, which we briefly review now.
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Table 1. Major quantum numbers and couplings of the bileptons

L J Y T3 Qγ QZ lepton couplings familiar sibling

Lµ
1 0 1 0 0 0 0 ēLeL (g1) ν̄LνL (g1) γ Z0 Z′

L̃µ
1 0 1 0 0 0 0 ēReR (g̃1) γ Z0 Z′

L2 0 0 1/2
1/2 1 − 2sin2 θw−1

2sin θwcos θw
ν̄LeR (g2) H+

−1/2 0 − 1
2sin θwcos θw

ēLeR (g2) H

1 1 cos θw
sin θw

ν̄LeL (
√

2g3) W+ W ′+

Lµ
3 0 1 0 0 0 0 ēLeL (−g3) ν̄LνL (g3) γ Z0 Z′

−1 −1 −cos θw
sin θw

ēLνL (
√

2g3) W − W ′−

L1 2 0 1 0 1 − sin θw
cos θw

eLνL (−λ1) (antisymm.)

L̃1 2 0 2 0 2 −2 sin θw
cos θw

eReR (λ̃1) (symm.)

Lµ
2 2 1 3/2

1/2 2 − 4sin2 θw−1
2sin θwcos θw

eReL (λ2)

−1/2 1 − 2sin2 θw+1
2sin θwcos θw

eRνL (λ2)

1 2 − 2sin2 θw−1
sin θwcos θw

eLeL (−√
2λ3)

L3 2 0 1 0 1 − sin θw
cos θw

eLνL (−λ3) (symm.)

−1 0 − 1
sin θwcos θw

νLνL (
√

2λ3)

This provides clearer, but assumption dependent, infor-
mation.

2.2.1 Flavour diagonal couplings

One of the simplest choices is a flavour diagonal coupling
matrix with identical strength to all three flavours:

λij = λδij ≡ λ


 1 0 0

0 1 0
0 0 1


 . (4)

This may be natural for a gauge bilepton if there is no lep-
tonic CKM matrix. It clearly does not apply to L1, whose
coupling matrix is antisymmetric. In this model, there are
fewer low-energy constraints, because they usually origi-
nate from flavour changing processes.

2.2.2 Flavour democracy

Another possible Ansatz, which maximally mixes all three
families, is inspired from a universal Yukawa interactions
model [48]:

λij ≡ λ


 1 1 1

1 1 1
1 1 1


 . (5)

For L1, we will assume that the “flavour democratic” cou-
pling matrix is of the form:

λij ≡ λ


 0 1 1

−1 0 1
−1 −1 0


 . (6)

This naturally leads to lepton flavour violating processes
and the resulting bounds from low-energy experiments are
rather strict.

2.2.3 Flavour infiltration

There is a mechanism that defines generations in approx-
imately the same way as for u and d type quarks, with
small CKM mixing angles. In [49], it was suggested that
this “approximate flavour symmetry” may be a property
of the low-energy effective theory derived from any ex-
tension of the standard model. In this case, the dilepton-
lepton coupling matrix would be of the form

λij ≡

 λ1 me

mµ
(λ2 − λ1) me

mτ
(λ3 − λ1)

me

mµ
(λ2 − λ1) λ2 mµ

mτ
(λ3 − λ2)

me

mτ
(λ3 − λ1) mµ

mτ
(λ3 − λ2) λ3


 . (7)
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This structure of the coupling matrix, which involves
only three free parameters may be particularly appropri-
ate for the scalar bileptons. We anti-symmetrize this ma-
trix for L1 (whose coupling matrix must be anti-symmetric
in generation space) in the obvious way: we set the diag-
onal elements to zero, and put negative signs in front of
the lower triangle.

2.3 Interactions with neutral gauge bosons

The interactions of the scalar and vector bileptons with
the neutral gauge fields are described by the following la-
grangians:

LJ=0 = (DµL)† (DµL) (8)

LJ=1 = −1/2(DµLν −DνLµ)† (DµLν −DνLµ) (9)

−iκγeQγL
†
µLν (∂µAν − ∂νAµ)

−iκZeQZL
†
µLν (∂µZν − ∂νZµ) ,

where L and Lµ denote generic scalar and vector bilep-
tons. The covariant derivative is given by

Dµ = ∂µ − ieQγAµ − ieQZZµ . (10)
The electric and weak charges Qγ and QZ are uniquely

determined by their hypercharge Y and weak isospin pro-
jection T3

Qγ = T3 + Y QZ = T3
cos θw

sin θw
− Y

sin θw

cos θw
. (11)

They are listed in Table 2.1 along with the other quantum
numbers for all bileptons.

For the vector bileptons there is an extra complication
due to our a priori ignorance of their gauge nature. If they
are gauge bosons the anomalous couplings κγ and κZ in
the lagrangian (9) vanish at tree level. Finite values of
these two parameters would generate electric quadrupole
and anomalous magnetic dipole moments of the bileptons.
The minimal couplings are obtained for κγ = κZ = 0,
whereas for Yang-Mills bileptons κγ = κZ = 1. For sim-
plicity, we shall mostly focus on these two possibilities,
i.e., κ = 0 or κ = 1. Still, we keep in mind that in princi-
ple these parameters can take any value.

The bileptons may also have self-interactions or cou-
plings to the Higgs or other unobserved particles. Such
interactions can in some cases be important, for instance
in generating neutrino masses or magnetic moments [4,6,
25,50]. We do not consider this complication here, as it in-
volves the introduction of new free parameters describing
the couplings between bileptons and other bosons. With-
out these interactions, the bileptons can only decay to a
pair of leptons.

2.4 Mass eigenstates

Before proceeding further into any phenomenological anal-
ysis, it is important to note that the electroweak eigen-

states we have just described may not be mass eigenstates,
and that members of a given multiplet may not have the
same mass. Those bileptons which carry the same spin and
electromagnetic charge, i.e., (L−

1 , L
−
3 ) and (L̃−−

1 , L−−
3 ),

could mix. In principle, if no particular model is referred
to, the mixing angles remain free parameters. However the
couplings of the gauge eigenstates to leptons (λ1, λ̃1, λ3)
can easily be disentangled at colliders by partitioning into
symmetric and antisymmetric couplings (for L−

1 and L−
3 )

or with polarized experiments (for L̃−−
1 and L−−

3 ). We
therefore shall not consider bilepton mixing, and we may
use the couplings summarized in Table 2.1 as such.

The fact that members of a multiplet may not have
the same mass is relevant for the low-energy bounds. If
we assume that the bileptons acquire an SU(2) × U(1)
invariant mass somewhere above the electroweak scale,
then any mass splittings between members of an SU(2)
multiplet should be comparatively small. In this case, a
bound on λ2/m2 for one member of a multiplet applies
approximately to other members. We nonetheless list the
bounds on multiplet members of different electric charge
separately, because there is no absolute guarantee that the
masses of SU(2) multiplets are approximately degenerate.

3 Low-energy bounds

Low-energy bounds on the bileptons can be derived from
the good agreement between theory and experiment in
processes expected in the standard model, and from the
non-observation of reactions which are forbidden or sup-
pressed in the standard model. Following the Particle Data
Book [51], which lists upper bounds on most branching ra-
tios at 90% confidence level, we list our constraints “at 2
σ”.

The mass of any L = 2 bileptons is constrained to ex-
ceed at least 38 GeV by LEP1 (see Sect. 4.1). This means
that we can usually approximate the low-energy effects
of bileptons in terms of four lepton operators. Details on
how to derive the four fermion interactions are presented
in Appendix A. The various renormalizable bilepton in-
teractions and the four-fermion interactions that they in-
duce are listed in Table 2. We will use these repeatedly
throughout this section.

As previously discussed, we neglect the phases of the
coupling constants. This means that for flavour non-dia-
gonal processes the signs in front of the four-fermion ver-
tices in Table 2 are irrelevant, and we neglect them. In
the text, we generically compute bounds from each pro-
cess on a four fermion vertex of specified tensor structure,
but with arbitrary coefficient aλ2/m2

L. The factor “a” con-
tains the possible factors of 2 and 1/2 (see Table 2). In
the tables of results we list the bounds for each bilepton.

We compute bounds from muon physics in the first
subsection, and from tau physics in the second. In the
third subsection, we briefly list other constraints.
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Table 2. Four fermion vertices induced by the L = 2 bileptons, in their original and
Fierz-transformed standard model-like forms. The conversion is easily performed with
the relations (A.3–A.5) of Appendix A. In the text we assume the couplings are real.
Coupling constant indices in square brackets are antisymmetric and in curly brackets
are symmetric

L̃−−
1

λ̃
{ij}
1 λ̃

{kl}∗
1

m2
L

(ēc
iPRej)(ēlPLec

k) 1
2

λ̃
{ij}
1 λ̃

{kl}∗
1

m2
L

(ēkγµPRei)(ēlγµPRej)

L−
1 4

λ
[ij]
1 λ

[kl]∗
1

m2
L

(ēc
iPLνj)(ν̄lPRec

k) 2
λ
[ij]
1 λ

[kl]∗
1

m2
L

(ēkγµPLei)(ν̄lγµPLνj)

L−−
2µ

λ
ij
2 λkl∗

2
m2

L

(ēc
iγ

µPRej)(ēlγµPRec
k) −λ

ij
2 λkl∗

2
m2

L

(ēkγµPLei)(ēlγµPRej)

L−
2µ

λ
ij
2 λkl∗

2
m2

L

(ν̄c
i γµPRej)(ēlγµPRνc

k) −λ
ij
2 λkl∗

2
m2

L

(ν̄kγµPLνi)(ēlγµPRej)

L−−
3 2

λ
{ij}
3 λ

{kl}∗
3

m2
L

(ēc
iPLej)(ēlPRec

k)
λ

{ij}
3 λ

{kl}∗
3

m2
L

(ēkγµPLei)(ēlγµPLej)

L−
3 4

λ
{ij}
3 λ

{kl}∗
3

m2
L

(ēc
iPLνj)(ν̄lPRec

k) 2
λ

{ij}
3 λ

{kl}∗
3

m2
L

(ēkγµPLei)(ν̄lγµPLνj)

L0
3 2

λ
{ij}
3 λ

{kl}∗
3

m2
L

(ν̄c
i PLνj)(ν̄lPRνc

k)
λ

{ij}
3 λ

{kl}∗
3

m2
L

(ν̄kγµPLνi)(ν̄lγµPLνj)

3.1 Muon physics

There are two categories of constraints from muon physics.
One can constrain the bileptons by requiring that their
contributions to decay modes forbidden in the standard
model (by lepton family number conservation) be less than
the present experimental bounds. One can also require
that bilepton contributions to allowed standard model
processes be “sufficiently small”. This gives a rough over-
all bound of λ2/m2

L
<∼ GF , that can in some cases be re-

fined. For a clear (and entertaining) introduction to muon
physics, see [52].

3.1.1 Polarized muon decay

The influence of the singly-charged vector bilepton Lµ
2 on

the decay of polarized muons has been discussed in [28]. If
the four-fermion vertex mediating muon decay is a purely
(V − A) × (V − A) effective interaction, then when a po-
larized muon decays at rest, the electron spectrum has a
particular shape. If the effective vertex for the decay also
contains, for instance, a sufficiently large (V −A)(V +A)
contribution, then this can be detected in the electron
spectrum.

Following the notation of the Particle Data Book [51],
we write the most general four fermion vertex for muon
decay µ → eν̄eνµ, in terms of scalar, vector and tensor
matrix elements for left-handed and right-handed elec-
trons and muons. There are experimental upper bounds
on the coefficient of each vertex, (except of course the SM
(V −A)×(V −A) vertex, for which there is a lower bound).
The coefficient gS

RR of the vertex 2
√

2GF (ēPLν)(ν̄PRµ) is
required to be less than .066 [53].

By Fierz rearranging, we have

(ēγαPRµ)(ν̄µγαPLνe) = −2(ēPLνe)(ν̄µPRµ) , (12)

so if aλ2/m2
L is the coefficient of the (V −A)(V +A) vertex

(12), then
aλ2

m2
L

< gS
RR

√
2GF (13)

or

aλ2 < 1.1
( mL

TeV

)2
. (14)

This applies to L−
2µ and is listed in the tables as µR → eν̄ν.

3.1.2 The decay µ− → e−ν̄µνe

The muon decay µ− → e−ν̄µνe has been considered in
[29–31,37,38]. This lepton flavour violating process is for-
bidden in the standard model, but can be mediated at
tree level by the singly-charged bileptons L−

2µ, L−
3 and L−

1
as depicted in Fig. 1. (Note that an L = 2 bilepton can
only conserve flavour if it couples to a single generation of
leptons; if it couples to multiple generations, its interac-
tions can still be flavour diagonal, in the sense that leptons
of the same flavour meet at a vertex, as in (4)). The ex-
perimental bound on the branching ratio (compared to
ordinary muon decay) is B.R. < 1.2% [54]. We assume
that this applies to (V − A)(V + A) vertices as well as
(V −A)(V −A). There is also a bound from the ratio [20,
24]

σ(ν̄µe
− → µ−ν̄e)

σ(νµe− → µ−νe)
≤ .05 (15)

but we obtain a slightly better constraint from the decay:

aλ2

m2
L

<
√
.012 × 2

√
2GF (16)

or

aλ2 < 3.6
( mL

TeV

)2
. (17)
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Fig. 1. Tree level process mediated by a singly-charged bilep-
ton that could induce µ− → e−νeν̄µ decays

Fig. 2. Tree level process mediated by a doubly-charged bilep-
ton that could induce µ− → e−e−e+ decays

The results are listed in Table 3 in Sect. 3.4. This combi-
nation of coupling constants will be better constrained by
the KARMEN neutrino oscillation experiment (see Sect.
3.3.3).

3.1.3 The decay µ → 3e

The decay of a muon into three electrons has been dis-
cussed in [16,25,36]. This lepton flavour violating process
is forbidden in the standard model, but can be mediated
at tree level by the doubly-charged bileptons L−−

2µ , L−−
3

and L̃−−
1 as depicted in Fig. 2. For V ±A bilepton vertices,

the rate ought to be the same as for standard model muon
decay (up to electron mass corrections), with aλ2/m2

L sub-
stituted for 2

√
2GF . The upper bound on the branching

ratio is 10−12 [55], so one has

√
2
aλ2

m2
L

<
√

10−12 × 2
√

2GF (18)

or
aλ2 < 2.3 × 10−5

( mL

TeV

)2
. (19)

The numerical bounds are given in Table 3, Sect. 3.4.
Note that this does bound 4-fermion vertices consisting

of four fermions of the same chirality, although at first
sight this seems to imply making two identical electrons at
the same place. One can see in the original vertex (before
Fierz rearrangement) that the two identical fermions do
not multiply to zero, but rather induce a Feynman rule
vertex i2λ. The rate in then divided by 2, for identical
fermions in the final state, which gives the

√
2 on the left

hand side of (18).

3.1.4 The decay µ → eγ

The radiative muon decay has been considered in [6,16,25,
38,56]. This lepton flavour violating process is forbidden
in the standard model, but can be mediated at the one-
loop level by the charged bileptons as depicted in Fig. 3.
The branching ratio of this decay is constrained to be
very small: BR(µ → eγ) < 4.9 × 10−11 [57]. However,

Fig. 3. One-loop diagrams mediated by doubly- or singly-
charged bileptons that could induce µ → eγ

this is a one-loop process, so the matrix element is sup-
pressed by a factor ∼ (1/4π)2. The decay µ → 3e gives
a stronger bound, but µ → eγ applies to different com-
binations of generation indices, because one can have any
lepton flavour in the loop.

The matrix element coupling two on-shell fermions to
an on-shell photon can be written

M[fi(pi) → ff (pf ) + γ(q)] =

−iūf (pf )
σµνqν
mi +mf

[
FV (q2) + FA(q2)γ5

]
ui(pi) , (20)

where σµν ≡ −i
2 [γµ, γν ] and q2 = 0. The decay rate of fi

to ff + γ is

Γ (fi → ff+γ) =
mi

8π
[
F 2

V (0) + F 2
A(0)

] ≤ 1.5×10−29 GeV .

(21)
The magnetic (FV (0)) and electric (FA(0)) dipole mo-
ments are both finite, and FV ' FA ≡ F for chiral fermi-
ons, so this gives

F ≤ 4.2 × 10−14 (22)

for muon decay.
For scalar bileptons, we estimate the one-loop dia-

grams of Fig. 3 to be

F ' e
∑

k

(
Qk

12
− 5QL

12

)
λµkλekm2

µ

(4π)2m2
L

+ O
(
eλ2m2

µm
2
k

(4πm2
L)2

)
,

(23)
where QL and Qk are the electric charges of the bilepton
and the intermediate fermion. For vector bileptons, we
estimate the leading order contribution from the one-loop
diagrams of Fig. 3 to be

F ' e
∑

k

(
Qk − 3QL

4

)
λµkλekm2

µ

(4π)2m2
L

+ O
(
eλ2m2

µm
2
k

(4πm2
L)2

)
.

(24)
We do not need to flip the chirality of the internal lep-

ton, so we expect an even power of the internal fermion
mass. Note that we have only estimated these matrix el-
ements. The constraints are therefore only approximate,
and could be missing factors of two.

Assuming there are no cancellations in the sum over
internal leptons, the leading order contribution in (23,24)
dominates. For the scalar bileptons the approximate
bound is then

aQL

∑
k

λµkλek <∼ 4 × 10−3
( mL

TeV

)2
(25)
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where a = 2 if a pair of identical fermions meet at a vertex,
and 1 otherwise. The bound on the couplings of the vector
is of order(

Qk − 3QL

4

)∑
k

λµkλek <∼ 2 × 10−3
( mL

TeV

)2
. (26)

Ignoring the sum over the internal fermions in (23)
and (24) implies that the bound on the sum is similar
to the bound on the elements of the sum. This is a non-
trivial assumption; we do not expect this to be the case
for gauge vector bosons (for instance), whose coupling ma-
trices should be unitary. If, for any of the bileptons, the
coupling matrices are unitary (

∑
k λ

µkλek∗ = 0), then the
bounds we quote are overly optimistic, and the first non-
zero contribution to µ → eγ is of order

λ2

(4π)2
m2

µm
2
k

m4
L

. (27)

This does not give interesting bounds on the bileptons. We
therefore quote in the summary Table 3 the “non-GIM-
suppressed” bounds, while noting that they only apply to
bileptons whose coupling matrices are not unitary. We ex-
plicitly consider the sum when we focus on specific models
in Tables 5–7.

The product of couplings λµeλee is better constrained
by the µ → 3e reaction. In Tables 3 and 4, we quote
bounds on λµµλµe and λµτλτe assuming that the lowest
order contributions with different fermions in the loop do
not cancel against each other. As discussed in the previous
paragraph, this may not be a valid assumption.

As noted in [56], under certain circumstances two-loop
diagrams may give better bounds on the SU(2) triplet
bileptons than the one-loop diagrams we have considered.
This happens if the scalar develops a vacuum expectation
value and couples to the W bosons; as we explicitly ignore
this possibility, the one-loop diagram should dominate.

3.1.5 g − 2 of the muon

The anomalous magnetic moment of the electron and the
muon are two of the most accurately measured quanti-
ties in physics, and are frequently used to constrain new
particles. The measured value of (g − 2)µ is [51]

(g − 2)µ

2
= [116592300 ± 840] × 10−11 (28)

and the standard model prediction [58] is (g − 2)th
µ =

116591739 ± 154 × 10−11. This allows, at two σ, a new
physics contribution of order

δ

(
g − 2

2

)
' 170 × 10−10 (29)

The contribution to g− 2 of the muon from bileptons,
or generic bosons from beyond the standard model, has
been computed in [16,19,22,27,30,31,36,38,59].

Fig. 4. One-loop diagrams mediated by doubly- or singly-
charged bileptons that could contribute to g − 2

As we shall see, these constraints are not particularly
strong; we list them anyway, because unlike most low en-
ergy bounds, (g−2)/2 constrains the square of a coupling
constant.

For the doubly-charged bileptons, both diagrams in
Fig. 4 contribute; for singly-charged bileptons, the photon
does not couple to the internal neutrino. These diagrams
have been evaluated in [60,59], from which we can read
off the leading order contributions.

If the bilepton is a vector boson, then the contribution
to (g − 2)µ is

(
2Qf

3
− 5QL

6

)
h2m2

µ

8π2m2
L

(30)

In these expressions and those that follow for scalar bilep-
tons, h is the coupling constant appearing at the bilepton-
lepton-lepton vertex. It can be read off from (3), provid-
ing one remembers to include a factor of 2 at the ver-
tices where L−−

1 and L−−
3 meet two identical fermions.

For scalar bileptons, the contribution os(
QL

12
− Qf

6

)
h2m2

µ

8π2m2
L

. (31)

From (29), this gives bounds of order

λ2 < 100
( mL

TeV

)2
(32)

for the vector bileptons, and of order

λ2 < 500
( mL

TeV

)2
(33)

for the scalars. The exact bounds are listed in Tables 3
and 4. As noted earlier, these bounds are weak, but apply
to coupling constant combinations |λµj |2. The bounds on
bileptons from g − 2 for the electron are too weak to be
interesting, because the contributions are suppressed by
the electron mass squared.

3.1.6 Muonium-antimuonium conversion

Doubly-charged bileptons with flavour diagonal couplings
may mediate the conversion of µ+e− atoms (muonium)
into µ−e+ atoms (antimuonium) as depicted in Fig. 5.
This has been considered by many people [12,16,19,20,25,
27,30–33,37]; [31] also studied muonium hyperfine split-
ting and [32] have studied this in a magnetic field.
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Fig. 5. Muonium-antimuonium conversion mediated at tree-
level by doubly-charged bileptons

As yet no such events have been observed and the most
stringent 90% C.L. experimental bounds on the effective
V ±A interactions are [61]

aλ2

m2
L

<




0.018 × 2
√

2GF for (V ±A)(V ±A) vertices

0.012 × 2
√

2GF for (V ±A)(V ∓A) vertices
(34)

or

aλ2 <




0.6
( mL

TeV

)2
for (V ±A)(V ±A) vertices

0.4
( mL

TeV

)2
for (V ±A)(V ∓A) vertices .

(35)
In the case of scalar bilepton exchange, these are identi-
cal fermions at the vertices, so the effective four-fermion
vertex is multiplied by 4.

3.1.7 GF from muon decay

Bilepton effects on the measurement of the Fermi constant
have been mentioned in [16], and discussed in [6,31]. GF

is measured in muon decay to be Gµ = 1.16639(2) × 10−5

[51]. This is then used to determine V ud in neutron β
decay. As discussed in [62], one can constrain new physics
by comparing these leptonic and hadronic determinations
of G. The bileptons could contribute at tree level to muon
decay, and make the experimental determination of Gµ

larger or smaller than its “true” value Gβ that enters into
β decay. We assume that the bileptons are the only new
physics present, so Gβ has the standard model value, and
the CKM matrix is unitary.

It is clear that

GµVex = GβVt (36)

where Vex is the experimental determination of a CKM
angle, derived using Gµ for GF , and Vt is the “true” CKM
matrix element. Unitarity implies that

1 =
∑

i

|V ui
t |2 (37)

or, substituting from (36) and rearranging

G2
β

G2
µ

=
∑

i

|V ui
ex |2 (38)

Fig. 6. a Tree level process mediated by a singly-charged
bilepton that could interfere with the standard model process
µ− → e−νeν̄µ. b Pure bilepton contribution to µ → eν̄ν (the
neutrino flavours are arbitrary)

The experimental measurements of Vui in the Particle
Data Book [51], at two sigma, imply∑

i

|V ui
ex |2 = .9981 ± .0055 (39)

Setting 2
√

2Gµ = 2
√

2Gβ ± aλ2/m2
L, we obtain

−.0036 <
aSλ2

√
2Gβm2

L

+
a2λ4

8G2
βm

4
L

< .0074 (40)

Note that we are allowing for interference between the W
and the bilepton; S is a possible chiral suppression factor
that arises if the bilepton produces a right-handed rather
than a left-handed electron. One needs to flip the elec-
tron chirality to interfere this amplitude with the standard
model one, so S = me/mµ [63]. (See the section on GF

measured in τ decays for a discussion of this, and more
complete references.) This gives

−.059
( mL

TeV

)2
< aSλ2 < .12

( mL

TeV

)2
(41)

for the interference term, and

|aλ2| < 2.8
( mL

TeV

)2
(42)

for the pure bilepton contribution.
The interference bound (41) is very strong, because it

is a bound on GFλ
2/m2

L, rather than λ4/m4
L, and unitar-

ity is satisfied at the ∼ .1 % level. It applies to the scalar
bileptons L−

1 and L−
3 . with (V −A)(V −A) vertices for the

couplings mediating the decay of a µ−
L to an e−

L , a νµ and
a ν̄e. This is a flavour non-diagonal process, where the µ−

L
meets the ν̄e at the same vertex, as shown in Fig. 6a.

The bound on the purely bileptonic contribution (42)
constrains bilepton decays to any flavour of neutrino, as
illustrated in Fig. 6b. The (V + A)(V − A) vertices me-
diated by the vector bilepton L−

2µ, who suffer the helicity
suppression factor S = me/mµ, are better constrained by
the pseudoscalar matrix element constraint (14).

3.1.8 The weak mixing angle

Bilepton effects on the measurement of sin2 θW have been
considered in [38]. The weak mixing angle is measured on
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the Z0 resonance to be .2256±.0023 (on-shell scheme), and
is measured leptonically at low E in the ratio of νµe → νµe
to ν̄µe → ν̄µe to be .224 ±.009. Bileptons would contribute
at tree level to the low-energy determination of sin2 θW ,
and very little to the LEP measurement, because LEP
runs at the Z0 peak. Bounds on bileptons from νee → νee
have also been calculated [29]; these are similar to this, but
constrain a different combination of generation indices,
and will be discussed in Sect. 3.3.3.

Following the Particle Data Book notation, we write
the neutrino–electron 4-fermion vertex in the form

2
√

2GF (ν̄γµPLν)(ēγµ[gLPL + gRPR]e) , (43)

where gL = 1
2 (gV −gA), gR = 1

2 (gV +gA). In the standard
model one has at tree level gL = sin2 θW − 1/2, gR =
sin2 θW . Using the standard model tree level values for gL

and gR, and δgL,R = aλ2/(2
√

2GFm
2
L), the bound

δL,R < 0.2256 − (0.224 − 0.018) (44)

gives

|aλ2| < 0.65
( mL

TeV

)2
(45)

for L−
2µ, L−

1 and L−
3 . These are bounds on the interference

between the standard model and bilepton amplitudes, so
they apply to bilepton vertices involving e, ē, νµ and ν̄µ.

3.2 Tau physics

The τ mass and branching ratios have recently been mea-
sured very accurately [64], and the new determinations
are consistent within errors with the standard model. The
bounds on new physics that can be derived from them
have been thoroughly and clearly discussed in [44]. Here,
we make a more cursory analysis, but include other rare
decay bounds.

3.2.1 GF from tau decay

The decays τ → `ν̄ν are observed at the expected stan-
dard model rate, which can be used to constrain bileptons
by requiring that their contributions to GF as measured in
τ decays (≡ Gτ ) be sufficiently small. The neutrino flavour
is unobserved, so assuming that all the neutrinos are light,
we can use this decay to bound bilepton-mediated decays
to arbitrary neutrino flavours.

We assume that there is no new physics in the strongly
interacting sector, so the CKM matrix is unitary, and GF

in β decay measures the four-fermion vertex induced by
the standard model W . From our previous discussion of
the bilepton contribution to G in muon decay, we know
that at two sigma

Gβ

Ĝµ

= 1.0000 + .0018 − .0037 (46)

where (see [44,63] for a complete analysis)

Ĝ2
µ ' G2

µ(1 + 2gS
RR

me

mµ
) (47)

In our analysis of muon decay, we assumed that Gµ =
Ĝµ, because gS

RR in muon decay is better constrained by
the shape of the electron spectrum than by the size of
G. (Recall that

√
2gS

RRG was the coefficient of the (V +
A)(V − A) four fermion vertex (12)). Equation (47) is a
linear approximation; gS

RR appears unsquared because it is
multiplied by the standard model vector coupling gV

LL ' 1.
Recent τ data [64] implies, at one sigma,

Ĝeτ

Ĝµ

= .999 ± .003 (48)

and
Ĝeτ

Ĝµτ

= 1.001 ± .004 (49)

where G`τ is G determined from τ → `νν̄ assuming a
(V −A) × (V −A) vertex.

Adding the errors in these “ratios of G” in quadrature,
we obtain at two sigma:

Ĝeτ

Gβ
= 1.000 ± .007 (50)

and
Ĝµτ

Gβ
= 1.000 ± .009 (51)

Alternatively, we could have constrained the ratio of [G
that bileptons contribute to at tree level]/[G that bilep-
tons do not contribute to at tree level] from the ratio
G`τ/Gπ,K . G`τ is G determined from leptonic τ decays,
and Gπ,K is G determined from τ → πνν̄ and τ → Kνν̄.
The error in this ratio is also of order 1-2% [44,64], so it
gives the same constraints.

Bileptons can induce two types of four fermion ver-
tices that mediate tau decay: either (¯̀γµRτ)(ν̄γµLν) or
(¯̀γµLτ)(ν̄γµLν). If the right-handed vertex is present,
then we have

Ĝ2
`τ = G2

β

(
1 +

2aλ2
√

2m2
LG

m`

mτ
+

a2λ4

8m4
LG

2

)
(52)

which implies, from the standard model-bilepton interfer-
ence term, that

aλ32λ23 < 1.9
( mL

TeV

)2
(53)

If bileptons induce the four-fermion vertex (¯̀γµLτ)
(ν̄τγµLν`) then Ĝ would be

Ĝ`τ = Gβ

(
1 +

aλ2

2
√

2m2
LG

)
(54)
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which gives the bound

aλ31λ13 < .23
( mL

TeV

)2
, aλ32λ23 < .32

( mL

TeV

)2
(55)

on the singly-charged scalar bileptons L−
1 and L−

3 , if the
final states are such that there are interferences with the
standard model amplitudes. For non-standard model pro-
cesses similar to those depicted in Fig. 6 the bounds are

aλν3λν′1 < 2.7
( mL

TeV

)2
, aλν3λν′2 < 3.3

( mL

TeV

)2
(56)

for both (V +A)(V −A) and (V −A)(V −A) vertices.

3.2.2 Lepton flavour violating tau decays

There are also tau lepton bounds from the non-observation
of the flavour-changing decays τ → `γ, and τ → 3` [65–
67]. Here (and in the tables) ` means µ or e, and f is any
charged lepton or antilepton (so 3` is some Q = 0 combi-
nation of muons and electrons). The bounds are straight-
forward copies of the muon calculations, and the results
are listed in the tables. The experimental upper bounds
on the τ branching ratios imply

F (τ → eγ) <∼ 2.4 × 10−8 (57)

F (τ → µγ) <∼ 4.0 × 10−8 (58)

which give bounds of order

Qλτkλek < 8
( mL

TeV

)2
(59)

Qλτkλµk < 13
( mL

TeV

)2
. (60)

We have approximated FV ' FA ≡ F as for the decay
µ → eγ. We assume that the bilepton coupling matrices λ
are not unitary, so that their contribution to τ → `γ is not
zero at lowest order (see the discussion following (24)).

The τ → 3` decays imply

aλ2 < .18
( mL

TeV

)2
(61)

for the bileptons L−−
2µ , L̃−−

1 and L−−
3 . For simplicity, we

conservatively neglect factors of 2 for identical fermions in
these bounds.

3.3 Other physics

3.3.1 Compositeness searches

Constraints on bileptons from Bhabha scattering (e+e− →
e+e−) have been calculated in [27,29,34,68]. However,
bounds on four fermion operators of the form (ēΓ e)(f̄Γ f)
(f here is an e, µ or τ) have been calculated by the JADE
and TASSO collaborations from PETRA data [69,70], and
it is these stronger constraints that we quote.

It was pointed out in [71] that composite theories
would produce effective four fermion vertices of the form

g2ηLL

2Λ2 (ψ̄γµPLψ)(ψ̄γµPLψ)

+
g2ηRR

2Λ2 (ψ̄γµPRψ)(ψ̄γµPRψ)

+
g2ηRL

Λ2 (ψ̄γµPRψ)(ψ̄γµPLψ) (62)

between the charged fermions. Including these interac-
tions in the cross-section for e+e− → e+e−, µ+µ−, τ+τ−
changes the angular distribution of the final state parti-
cles. For g2 ' 4π, and ηPP ′ = ±1, JADE and TASSO give
bounds on Λ between 1 − 7 TeV [69,70]. The exact num-
bers depend on the sign and indices of η. Unfortunately,
ηLR, does not seem to have been explicitly considered, so
we assume the bound on Λ in this case to be ' 3 TeV.
The exact constraints are in the tables, but are roughly

aλ2 ≤ 2πm2
L

Λ2 ' .7
( mL

TeV

)2
(63)

Four fermion operators at LEP and SLC have been
discussed in [72], who show that experiments running on
the Z peak do not provide strong generic bounds on four-
fermion operators.

3.3.2 Neutrino oscillations

Bileptons can be constrained by neutrino oscillation ex-
periments if the neutrinos are produced leptonically (in
the decay of a muon). In this case, the bileptons could
contribute at tree level to the production of the neutrino
beam, but are unimportant in the detection of the neutri-
nos, because the cross section to scatter off an electron in
the target is suppressed with respect to the cross section
on nuclei by a factor of order me/Eν . (Recall that bilep-
tons do not couple to quarks.) See [73] for a thorough
discussion of constraints on various kinds of new physics
from neutrino oscillation experiments.

As usual, we assume that bileptons are the only source
of physics beyond the standard model. They can mediate
at tree level the decays µ → eνiν̄j where i 6= µ. The neu-
trino oscillation experiment bounds on Pµi = 1

2 sin2 2θ for
large ∆m2 are upper limits on the probability of making
an i neutrino when one expected a µ neutrino. Most of
these flavour oscillation limits are of order 1 − 10%, and
therefore imply weaker limits than can be derived from
unitarity arguments (Sect. 3.1.6). However, as noted in
[73], the bounds from the KARMEN experiment [74] on
νµ → νe oscillations and the FNAL E351 experiment [75]
on νµ → ντ give

Pµe < 3 × 10−3 (64)

Pµτ < 2 × 10−3 ,

which translates into the bound

aλ2

m2
L

<
√
Pµi × 2

√
2GF (65)
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or

aλ2 <∼ 1.8
( mL

TeV

)2
oscillation to electrons (66)

aλ2 <∼ 1.5
( mL

TeV

)2
oscillation to taus . (67)

This constraint applies to a bilepton vertex involving a µ,
ē, νf (f is arbitrary) and a ν̄e or a ν̄τ . Although the ex-
perimental results are very precise, the ensuing bounds are
not particularly strong because there is no enhancement
via interferences with a standard model amplitude.

3.3.3 Neutrino scattering

The elastic scattering of neutrinos off electrons is in princi-
ple a good place to look for generation diagonal bounds on
bileptons, but unfortunately the event rate is rather low.
Constraints from neutrino scattering processes on vector
bileptons were considered in [29].

The νee scattering cross-section in the presence of
right-handed neutrinos and an arbitrary four fermion ver-
tex was derived in [76]. Assuming that our neutrinos are
left-handed, the vertex can be written in terms of the ef-
fective coupling constants gL = gSM

L + δgL and gR =
gSM

R + δgR (see Sect. 3.1.7). These were measured in νee
scattering at LAMPF [77], to be [78]

g2
R = .534 ± .184 (68)
g2

L = .084 ± .031 .

Using the LEP determination of sin2 θW , we get the two
sigma bounds

aλ2 < 7
(
m2

L

TeV

)2

(69)

for the singly-charged bileptons.

3.3.4 Limits from neutrino masses and magnetic moments

We have looked for possible bounds on bileptons from neu-
trino magnetic moments, but did not find anything useful.
We do not find bounds from neutrino masses, because we
assume that lepton number is conserved, and that there
are no right-handed neutrinos.

3.4 Low-energy summary

In an attempt to clarify what ranges of bilepton mass and
coupling constant are allowed, we present the constraints
in various ways. We first simply list the bounds in Table 3
and 4. This is not very appealing, but does contain model-
independent information. We then make various assump-
tions about the relative magnitudes of the different entries
in the coupling constant matrices λij , as described in Sect.
2.2. This allows us to present attractive (but assumption
dependent) constraints in Tables 5, 6 and 4.

In Tables 3 and 4, we list the numerical bounds on
λ2/m2

L in units of TeV−2 for each bilepton from the vari-
ous low-energy processes we have considered. We list
bounds separately for each member of the bilepton mul-
tiplets, to allow different members of an SU(2) multiplet
to have different masses. We assume, in computing these
bounds, that the bilepton is the only addition to the stan-
dard model but we make no assumptions about the struc-
ture of the coupling constant matrices.

The bounds listed in Tables 3 and 4 are difficult to in-
terpret. There are rarely constraints on squares coupling
constant products of the form |λij |2. Rather, the bounds
are usually on the products λijλkl with i 6= k, j 6= l. There
are two reasons for this. Firstly, a number of constraints
come from the non-observation of lepton flavour violat-
ing interactions that are forbidden in the standard model
and usually these are not mediated by generation diago-
nal bilepton couplings. The second difficulty is that most
of the data come from decays, which involve leptons of
different flavours for kinematic reasons. This means, for
example, that if there was a ∼ 100 GeV boson with gauge
strength coupling only to muons or only to taus, we would
not have seen it.

In Table 5, we assume flavour diagonal interactions
(4). This might be a reasonable coupling constant ma-
trix for a gauge bilepton, in the limit of massless neutri-
nos, i.e., in the absence of a leptonic CKM matrix. The
doubly-charged bileptons are best constrained by the ab-
sence of muonium oscillations, whereas the singly-charged
ones by neutrino oscillation experiments and muon decay.
New neutrino oscillation data could improve these bounds.

In Table 6, we list the best constraint on each coupling
constant assuming flavour democracy (5). The doubly-
charged bileptons are best constrained by the non-obser-
vation of µ → 3e decays, whereas the singly-charged ones
by radiative muon decays.

Assuming flavour infiltration (7), we list in Table 7
the upper bounds on λ1, λ2 and λ3. To compute bounds
on the parameter λ1 (for example), from a decay involving
λ12λ11, we set λ12 ' me

mµ
λ1. If λ2 < λ1, this is a good ap-

proximation, and if λ2 > λ1, it gives conservative bounds.
The strongest bounds originate from the non-observation
of µ → 3e decays and radiative muon and tau decays.

To gauge the sensitivity of the low-energy experiments,
recall that the coefficient of the W mediated standard
model 4 fermion vertex is 2

√
2GF , which, in our notation,

would correspond to λ ' 6mL/TeV. The standard model
Yukawa couplings for leptons are of order 10−7 → 10−2.
One can see from Tables 7 and 5 that if one makes reason-
able assumptions about the coupling constant matrix λ,
bileptons with masses ∼ 100 GeV → 10 TeV are consistent
with low-energy data.

4 High-energy bounds

Since bileptons do not couple to quarks, the ideal high-
energy setup for their discovery seems to be a lepton and/
or photon collider. Nevertheless, the Drell-Yan bilepton
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Table 3. Summary of the low-energy constraints on the bilepton-lepton-lepton coupling λ from experiments involving muons. The
bilepton mass is given in units of 1 TeV. The bounds are only for absolute values of the couplings. The bounds on the Lµ

2 couplings
apply as well to the symmetrized combinations. The labels ` stand for e or µ, whereas the labels f stand for all three families. The
g − 2 bounds on λ1 and λ3 should be divided by 4 for f = 2; the µ → eγ bounds on λ1 and λ3 should be divided by 2 for f = 1, 2.
Both the g − 2 and µ → eγ bounds apply to a sum of coupling constant products; we assume there are no cancellations between terms
in these bounds

experiment L̃−−
1 L−

1 L−−
2µ L−

2µ L−−
3 L−

3

µR → eν̄ν λ1f λ2f′

m2
L

< 1 × 10−0

µL → eν̄µνe
λ11λ22

m2
L

< 4 × 10−0 λ11λ22

m2
L

< 5 × 10−1

Gµ
λ[12]λ[21]

m2
L

< 6 × 10−2 λ12λ21

m2
L

< 6 × 10−2

λ[1f]λ[2f′]
m2

L

< 1 × 10−0 λ1f λ2f′

m2
L

< 3 × 10−0 λ1f λ2f′

m2
L

< 1 × 10−0

sin2 θw
λ[12]λ[12]

m2
L

< 3 × 10−1 λ12λ12

m2
L

< 6 × 10−1 λ12λ12

m2
L

< 3 × 10−1

µ → eeē λ11λ12

m2
L

< 5 × 10−5 λ11λ12

m2
L

< 2 × 10−5 λ11λ12

m2
L

< 2 × 10−5

µ → eγ λf2λf1

m2
L

< 2 × 10−3 λ[f2]λ[f1]

m2
L

< 4 × 10−3 λf2λf1

m2
L

< 2 × 10−3 λf2λf1

m2
L

< 2 × 10−3 λf2λf1

m2
L

< 1 × 10−3 λf2λf1

m2
L

< 2 × 10−3

M ↔ M̄ λ11λ22

m2
L

< 3 × 10−1 λ11λ22

m2
L

< 4 × 10−1 λ11λ22

m2
L

< 2 × 10−1

(g − 2)µ
λf2λf2

m2
L

< 4 × 10+2 λ[f2]λ[f2]

m2
L

< 1 × 10+3 λf2λf2

m2
L

< 5 × 10+1 λf2λf2

m2
L

< 1 × 10+2 λf2λf2

m2
L

< 4 × 10+2 λf2λf2

m2
L

< 1 × 10+3
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Table 4. Summary of the low-energy constraints on the bilepton-lepton-lepton coupling λ from τ decays, compositeness searches and neutrino
experiments. The bilepton mass is given in units of 1 TeV. The bounds are only for absolute values of the couplings. The bounds on the Lµ

2
couplings apply as well to the symmetrized combinations. The labels ` stand for e or µ, whereas the labels f stand for all three families. The
τ → `γ bounds apply to a sum of coupling constant products; we assume there are no cancellations between terms in these bounds. (The
bounds on L−−

1 and L3 with arbitrary indices f and/or ` should be divided by 2 (or 4) if one (or both) of the λ is flavour diagonal)

experiment L̃−−
1 L−

1 L−−
2µ L−

2µ L−−
3 L−

3

Gτ
λ[3f]λ[`f′]

m2
L

< 2 × 10−0 λ3f λ`f

m2
L

< 3 × 10−0 λ3f λ`f′

m2
L

< 2 × 10−0

λ[32]λ[23]

m2
L

< 2 × 10−1 λ32λ23

m2
L

< 2 × 10−0 λ32λ23

m2
L

< 2 × 10−1

λ[31]λ[13]

m2
L

< 1 × 10−1 λ31λ13

m2
L

< 1 × 10−1

τ → 3` λ3`λ`′`′′

m2
L

< 4 × 10−1 λ3`λ`′`′′

m2
L

< 2 × 10−1 λ3`λ`′`′′

m2
L

< 2 × 10−1

τ → eγ λf3λf1

m2
L

< 4 × 10−0 λ[f3]λ[f1]

m2
L

< 8 × 10−0 λf3λf1

m2
L

< 4 × 10−0 λf3λf1

m2
L

< 4 × 10−0 λ3f λf1

m2
L

< 4 × 10−0 λ3f λf1

m2
L

< 8 × 10−0

τ → µγ λf3λf2

m2
L

< 7 × 10−0 λ[f3]λ[f2]

m2
L

< 1 × 10+1 λf3λf2

m2
L

< 7 × 10−0 λf3λf2

m2
L

< 7 × 10−0 λf3λf2

m2
L

< 7 × 10−0 λf3λf2

m2
L

< 1 × 10+1

(ēe)(ēe) λ11λ11

m2
L

< 2 × 10−0 λ11λ11

m2
L

< 7 × 10−1 λ11λ11

m2
L

< 8 × 10−1

(ēe)(µ̄µ) λ12λ12

m2
L

< 6 × 10−1 λ12λ12

m2
L

< 7 × 10−1 λ12λ12

m2
L

< 3 × 10−1

(ēe)(τ̄ τ) λ13λ13

m2
L

< 3 × 10−0 λ13λ13

m2
L

< 7 × 10−1 λ13λ13

m2
L

< 1 × 10−0

νµ → νe, ντ
λ11λf2

m2
L

< 1 × 10−0 λ11λf2

m2
L

< 3 × 10−1

λ[13]λ[f2]

m2
L

< 9 × 10−1 λ13λf2

m2
L

< 2 × 10−0 λ13λf2

m2
L

< 9 × 10−1

νee → νee
λ11λ11

m2
L

< 7 × 10−0 λ11λ11

m2
L

< 1 × 10−0
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Table 5. Best bounds on λ/mL for each bilepton, assuming
flavour diagonal couplings (4). Note that these are bounds on
λ, not λ2. The processes from which the bounds originate are
listed in the third column

L̃−−
1

λ
mL

< .5 TeV−1 M − M̄

L−−
2µ

λ
mL

< .6 TeV−1 M − M̄

L−
2µ

λ
mL

< 1 TeV−1 µR → eνν

L−−
3

λ
mL

< .3 TeV−1 M − M̄

L−
3

λ
mL

< .5 TeV−1 νµ → νe

Table 6. Best bounds on λ/mL for each bilepton, assuming
flavour democracy (5). Note that these are bounds on λ, not
λ2. The processes from which the bounds originate are listed
in the third column

L̃−−
1

λ
mL

< 7 × 10−3 TeV−1 µ → 3e

L−
1

λ
mL

< 6 × 10−2 TeV−1 µ → eγ

L−−
2µ

λ
mL

< 4 × 10−3 TeV−1 µ → 3e

L−
2µ

λ
mL

< 3 × 10−2 TeV−1 µ → eγ

L−−
3

λ
mL

< 4 × 10−3 TeV−1 µ → 3e

L−
3

λ
mL

< 2 × 10−2 TeV−1 µ → eγ

pair-production mechanism in hadron collisions may be-
come a possible source of bileptons at LHC energies [35].
Of course, even though by definition bileptons do not cou-
ple to quarks, they may also carry a colour charge. In this
case hadron colliders may become a major source of bilep-
tons, but we ignore this exotic possibility here.

The present most stringent bounds on bilepton masses
originate from their non-observation in the Z0 decays

Z0 → L0L0, L+L−, L++L−− (70)

where L represents a generic scalar or vector bilepton.
As we shall see, this constrains the bilepton masses to
lie above 38 GeV. The advantage of these bounds is that
they are firm and do not depend on any unknown lepton-
bilepton coupling.

Serious improvements on the present bilepton bounds
are expected from experiments at a future linear collider,
with a typical energy in the TeV range. A major asset
of such a machine is its versatility, as it can be operated
in the four e+e−, e−e−, e−γ and γγ modes, with highly
polarized electron and photon beams. The typical linear
collider designs aim at an integrated yearly e+e− lumi-
nosity scaling with the squared center of mass energy s

like

Le+e− [fb−1] = 80s [TeV2] or Le+e− ' 3×107s .
(71)

We shall present our results in such a way that departures
from this working assumption are trivial to implement.

For the doubly-charged bileptons L̃−−
1 , L−−

2µ and L−−
3 ,

indirect searches are possible in e+e− and e−e− scattering
[79] through the reactions:

e+e− → e+e− (72)
e+e− → `+`− (73)
e+e− → e+`− (74)
e−e− → e−e− (75)
e−e− → `−`− (76)
e−e− → e−`− , (77)

where ` = µ, τ . The analysis of these processes may sig-
nificantly improve the excluded ratios λ/mL obtained by
low-energy data, and provide additional information on
the structure of the coupling constants matrix.

In the event an anomaly is observed, though, it may
as well be due to other “new physics” effects. In this case,
such indirect evidence is no substitute for direct searches.

The lowest order reactions producing bileptons are the
following:

e−e− → L−− (78)
e+e− → L+ L− (79)
e+e− → L++ L−− (80)
e−γ → ν̄ L− (81)
e−γ → e+ L−− (82)
γγ → L+ L− (83)
γγ → L++ L−− . (84)

If the center of mass energy reaches the mass of a
doubly-charged bilepton L̃−−

1 , L−−
2µ and L−−

3 , a clearly
outstanding resonance is expected from the reactions (78).
This e−e− annihilation process obviously dwarfs the other
reactions (80,82,84), which therefore need not be consid-
ered.

Similarly, the singly-charged bileptons L−
1 and L−

3 , are
obtained best in the e−γ linear collider operating mode
via the reactions (81). Indeed, this way the bileptons need
not be pair produced as in reactions (79,83), and can be
observed with lower center of mass energies.

In the event the lepton-bilepton couplings are small,
though, it may be difficult to resolve the bileptonic signal
in the reactions (81). In this case the reactions (79,83) offer
an interesting alternative, since they can proceed via the
photon or Z0 couplings to bileptons, which always remain
sizable.

As for low-energy experiments, the most problematic
bilepton is the neutral L0

3, which does not couple to
charged leptons and will hence be more difficult to pro-
duce and to detect in standard high-energy experiments.
The only bounds which we can think of, stem from the
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Table 7. Best bounds on λi/mL for each bilepton, assuming flavour infiltration
(7). The superscript “i” is a generation index. Note that these are bounds on
λ, not λ2. The processes from which the bounds originate are listed below each
bound

L̃−−
1

λ1

mL
< .1 TeV−1 λ2

mL
< .6 TeV−1 λ3

mL
< 11 TeV−1

µ → 3e µ → eγ τ → µγ

L−
1

λ1

mL
< 50 TeV−1 λ2

mL
< 8 TeV−1 λ3

mL
< 8 TeV−1

Gµ Gτ Gτ

L−−
2µ

λ1

mL
< .06 TeV−1 λ2

mL
< .6 TeV−1 λ3

mL
< 11 TeV−1

µ → 3e µ → eγ τ → µγ

L−
2µ

λ1

mL
< .6 TeV−1 λ2

mL
< .6 TeV−1 λ3

mL
< 11 TeV−1

µ → eγ µ → eγ τ → µγ

L−−
3

λ1

mL
< .06 TeV−1 λ2

mL
< .5 TeV−1 λ3

mL
< 11 TeV−1

µ → 3e µ → eγ τ → µγ

L−
3

λ1

mL
< .3 TeV−1 λ2

mL
< .3 TeV−1 λ3

mL
< 7 TeV−1

µ → eγ µ → eγ τ → µγ

invisible Z0 width. If someday a Z ′ resonance is reached,
a similar analysis will of course further constrain the L0

3
mass.

4.1 Z0 decay

The tree-level Z0 decay widths (70) into a pair of scalar
[20,35,36] or vector bileptons are given by:

Γ (J = 0) =
αQ2

Z

12
mZβ

3 (85)

Γ (J = 1) =
αQ2

Z

12
mZβ

3 1
1 − β2

×
[
7 − 12κ+ 4κ2 − 3β2 + 4κ2 1

1 − β2

]
, (86)

where

β =

√
1 − 4m2

L

m2
Z

(87)

and κZ is the weak anomalous coupling (9).
Since the four LEP experiments report no serious de-

viation of the Z0 width measurement with its standard
model prediction, the bilepton contributions (85,86) to the
charged lepton or invisible widths may not exceed the ex-
perimental error, which amount to 0.27 MeV and 4.2 MeV
respectively [51].

We do not know a priori the value of the anomalous
weak coupling κZ in (86). The most conservative LEP

bounds on vector bileptons are given by the value of κZ

which minimizes the width

κmin = −3
2

1 − β2

2 − β2 . (88)

The corresponding vector width is then given by

Γmin(J = 1) =
αQ2

Z

12
mZ

β3(5 − 4β2 + 3β4)
(1 − β2)(2 − β2)

. (89)

We plot Γmin in Fig. 7 as a function of the bilepton
mass. The least constrained bilepton turns out to be L−−

2µ ,
whose coupling to the Z0 vanishes in the limit sin2 θw =
1/4. Any mass above ca 38 GeV is allowed. The other
bileptons L−

1 , L
−
3 , L

0
3 must lie above 44 GeV and L̃−−

1 ,
L−−

3 , L−
2µ above 45 GeV.

These results are confirmed by dedicated searches for
doubly-charged Higgs bosons [39,41]. Of course, more spe-
cific dedicated searches for four-lepton events or highly
ionizing tracks (in the event the bilepton couples so weakly
to leptons that it decays outside the detector) may im-
prove these bounds, which anyway correspond to the worst
case scenario where κZ is tuned as in (88).

Virtual bileptons may also enhance the four-lepton
events rates, if their couplings to leptons are large. How-
ever, the bounds obtainable this way cannot compete with
those from low-energy data [43].
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Fig. 7. Partial decay widths of the Z0 into pairs of bileptons
as a function of the bilepton mass. The lower dotted line shows
the largest partial width consistent with data for the charged
bileptons, whereas the upper dotted line represents the same
limit for the neutral bilepton L0

3

4.2 Indirect signals

The doubly-charged bileptons L̃−−
1 , L−−

2µ and L−−
3 con-

tribute to both Bhabha and Møller scattering [79], even
if they are too heavy to be directly produced at the given
collider energy. They can therefore be detected via devia-
tions from the standard model expectations for the total
cross sections and angular correlations. In the presence
of off-diagonal flavour couplings, they may even produce
final states which are not expected in the realm of the
standard model.

These processes have been considered previously for
the doubly-charged scalar bileptons in the context of trip-
let Higgs models [8,20,36], as well as for doubly-charged
gauge bileptons [29,80]. Contrary to the claim of [8], we
do not find any chiral suppression in the scalar sector.

4.2.1 e+e− scattering

Doubly-charged bileptons contribute to Bhabha scattering
(72) via their u-channel exchange as depicted in Fig. 8.
The corresponding polarized differential cross sections in
the case of the exchange of the scalar L−−

1 are given by

dσ(e+e− → e+e−, L̃−−
1 )

dt
=

4πα2

s2

×
{

[RR]

[(∑
i

R2
i

(
u

s−m2
i

+
u

t−m2
i

)

+2
λ2

e2
u

u−m2
L

)2

+

(∑
i

LiRi
t

s−m2
i

)2



+[LL]


(∑

i

L2
i

(
u

s−m2
i

+
u

t−m2
i

))2

+

(∑
i

LiRi
t

s−m2
i

)2



+[LR]

(∑
i

LiRi
s

t−m2
i

)2

 , (90)

where e is the charge of the electron, α = e2/4π, λ = λee

is the generic diagonal coupling of the bilepton and s, t
and u are the Mandelstam variables. The dependence on
the polarizations of the positron and electron beams P±
is contained in the factors

[RR] =
1 + P+ + P− + P+P−

4
(91)

[LL] =
1 − P+ − P− + P+P−

4

[LR] =
1 − P+P−

2
.

The summation runs over i = γ, Z0 and the standard
model couplings of the photon and Z0 boson to left- and
right-handed leptons are given by



Rγ = 1

Lγ = 1



RZ0 = − sin θw

cos θw

LZ0 =
1 − 2 sin2 θw

2 sin θw cos θw
.

(92)

Similarly, the contribution due to L−−
3 is given by the

simple replacements

dσ(L−−
3 )

dt
=
dσ(L̃−−

1 )
dt

(
λ →

√
2λ, [LL] ↔ [RR]

)
. (93)

The cross section for e+e− annihilation into a pair of
other leptons ` (73) is easily obtained from (90) by sup-
pressing the γ, Z0 t-channel exchanges and replacing the
diagonal coupling constants matrix element λ by the off-
diagonals λe` and λ`e.

Similarly, if there are simultaneously diagonal and off-
diagonal bilepton couplings, the cross section for reaction
(74) is obtained by keeping only the non-standard model
u-channel contributions and replacing λ2 by λeeλe` and
λeeλ`e.

For the exchange of the vector bilepton, we find the
differential cross sections

dσ(e+e− → e+e−, L−−
2µ )

dt
=

4πα2

s2
(94)

[RR]


(∑

i

R2
i

(
u

s−m2
i

+
u

t−m2
i

))2
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Fig. 8. Lowest order Feynman diagrams contributing to e+e− → e+e− scattering. The exchanged doubly-charged bilepton L−−

in the third diagram, can be either the scalars L̃−−
1 , L−−

3 or the vector L−−
2µ

+

(∑
i

LiRi
t

s−m2
i

− λ2

e2
t

u−m2
L

)2

+
(
λ2

e2
t

u−m2
L

)2
]

+[LL]


(∑

i

L2
i

(
u

s−m2
i

+
u

t−m2
i

))2

+

(∑
i

LiRi
t

s−m2
i

− λ2

e2
t

u−m2
L

)2

+
(
λ2

e2
t

u−m2
L

)2
]

+[LR]

(∑
i

LiRi
s

t−m2
i

− λ2

e2
s

u−m2
L

)2

 .

The unpolarized (P+ = P− = 0) differential cross section
(94) coincides with the one given in [29] but disagrees with
[80].

The cross section for reaction (73) is obtained from
(94) by suppressing the γ, Z0 t-channel exchanges as well
as the [LR] term and by replacing the diagonal coupling
constants matrix element λ by the off-diagonals λe` in the
[RR] term and λ`e in the [LL] term.

Similarly, the cross section for reaction (74) is obtained
by droping all the standard model γ and Z0 terms, by
replacing λ2 by λeeλe` in the [RR] term and λeeλ`e in the
[LL] term, and by replacing λ4 by λ2

ee (λe` + λ`e) /2 in the
[LR] term.

4.2.2 e−e− scattering

As depicted in Fig. 9, doubly-charged bileptons contribute
to Møller scattering (75) via their s-channel exchange [79].
The corresponding polarized differential cross sections can
of course be obtained from those in Bhabha scattering by
crossing symmetry. In the case of the scalar exchange they
are given by

dσ(e−e− → e−e−, L̃−−
1 )

dt
=

2πα2

s2
(95){

[RR]

[∑
i

R2
i

(
s

t−m2
i

+
s

u−m2
i

)

+2
λ2

e2
s

s−m2
L

]2

+[LL]

[∑
i

L2
i

(
s

t−m2
i

+
s

u−m2
i

)]2

+[LR]


(∑

i

LiRi
t

u−m2
i

)2

+

(∑
i

LiRi
u

t−m2
i

)2



 ,

where we have used the same notations as in the previous
section.

Again, as in the e+e− case, the cross sections for the
L−−

3 exchange are related to (95) by the substitutions
(93).

Similarly, for the exchange of the vector bilepton, we
find the differential cross sections

dσ(e−e− → e−e−, L−−
2µ )

dt
=

2πα2

s2
(96)

[RR]

[∑
i

R2
i

(
s

t−m2
i

+
s

u−m2
i

)]2

+[LL]

[∑
i

L2
i

(
s

t−m2
i

+
s

u−m2
i

)]2

+[LR]


(∑

i

LiRi
t

u−m2
i

− λ2

e2
t

s−m2
L

)2

+

(∑
i

LiRi
u

t−m2
i

− λ2

e2
u

s−m2
L

)2



 .

The cross sections for the reactions (76,77), which pro-
duce leptons ` other than electrons are easily obtained
from (95) and (96) by keeping only the non-standard model
s-channel contributions and replacing λ2 by either λeeλ``

or λeeλe`.

4.2.3 Discovery limits

The Bhabha scattering data gathered below the Z0 peak
has allowed to constrain the scalar [20,36] and vector [29]
bilepton masses and coupling by

λ̃ee
1

mL

<∼ 4.4
λee

2

mL

<∼ 2.1
λee

3

mL

<∼ 3.1 (97)

at the 95 % confidence level. A similar analysis of the
LEP data above the Z could improve these bounds, with
sufficient luminosity.
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Fig. 9. Lowest order Feynman diagrams con-
tributing to e−e− → e−e− scattering. The ex-
changed doubly-charged bilepton L−− in the third
diagram, can be either the scalars L̃−−

1 , L−−
3 or

the vector L−−
2µ

To gauge the discovery potential of the reactions (72–
77), it is instructive to work in the limits

|P | = 1 m2
Z � s � m2

L sin2 θw =
1
4
,

(98)
where the propagators and the standard model γ, Z0 cou-
plings (92) simplify drastically.

The reactions (74,76,77) cannot take place in the realm
of the standard model. Given the spectacular nature of
lepton flavour violation, we estimate that five events should
suffice to establish a discovery. We therefore need an av-
erage number of 9.15 Poisson distributed events such that
at least 5 events are observed with 95% probability.

The average number of events is given by

N = L
∫
dt
dσ

dt
, (99)

where L is the integrated luminosity. Because there will
be some amount of anti-pinch at the interaction point for
the e−e− mode, we assume it can only achieve half the
luminosity of the e+e− mode [83]:

Le−e− = Le+e−/2 , (100)

where the e+e− luminosity follows the energy scaling law
(71).

For the reactions (72,73,75), which do take place whe-
ther there are bileptons or not, we compute the Cramér-
Rao limit (cf. Appendix B)

χ2
∞ = L

∫
dt

(
dσ(λ)
dt

− dσ(λ = 0)
dt

)2

dσ(λ = 0)
dt

. (101)

Setting the value of the estimator χ2
∞ equal to 3.84, we

obtain the 95% confidence bounds on the parameter λ.
The particularly clean environment of the e+e− and

above all e−e− collisions, largely justifies here the neglect
of systematic errors.

It is straightforward to obtain the following lower
bounds on the observable values of the ratios λ/mL:

reaction polarization bilepton bound

P− = P+ = +1 L̃−−
1

λ2
ee

m2
L

≥ .23

√
16πχ2∞
sLe+e−

P− = P+ = −1 L−−
3

λ2
ee

m2
L

≥ .11

√
16πχ2∞
sLe+e−

e+e− → e+e−

P− = P+ = ±1 L−−
2µ

λ2
ee

m2
L

≥ .49

√
16πχ2∞
sLe+e−

P− = −P+ = ±1 L−−
2µ

λ2
ee

m2
L

≥ .25

√
16πχ2∞
sLe+e−

P− = P+ = +1 L̃−−
1

λ2
e`

m2
L

≥ .22

√
16πχ2∞
sLe+e−

P− = P+ = −1 L−−
3

λ2
e`

m2
L

≥ .11

√
16πχ2∞
sLe+e−

e+e− → `+`−

P− = P+ = ±1 L−−
2µ

λ2
e`

m2
L

≥ .53

√
16πχ2∞
sLe+e−

P− = −P+ = ±1 L−−
2µ

λ2
e`

m2
L

≥ .50

√
16πN

sLe+e−

P− = P+ = +1 L̃−−
1

λee

mL

λe`

mL

≥ .31

√
16πN

sLe+e−

P− = P+ = −1 L−−
3

λee

mL

λe`

mL

≥ .15

√
16πN

sLe+e−
e+e− → e+`−

P− = P+ = ±1 L−−
2µ

λee

mL

λe`

mL

≥ .61

√
16πN

sLe+e−

P− = −P+ = ±1 L−−
2µ

λee

mL

λe`

mL

≥ .50

√
16πN

sLe+e−

P1 = P2 = +1 L̃−−
1

λ2
ee

m2
L

≥ .18

√
16πχ2∞
sLe+e−

e−e− → e−e− P1 = P2 = −1 L−−
3

λ2
ee

m2
L

≥ .09

√
16πχ2∞
sLe+e−

P1 = −P2 = ±1 L−−
2µ

λ2
ee

m2
L

≥ .44

√
16πχ2∞
sLe+e−

P1 = P2 = +1 L̃−−
1

λee

mL

λ``

mL

≥ .35

√
16πN

sLe+e−

e−e− → `−`− P1 = P2 = −1 L−−
3

λee

mL

λ``

mL
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√
16πN

sLe+e−

P1 = −P2 = ±1 L−−
2µ

λee

mL

λ``

mL
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√
16πN

sLe+e−

P1 = P2 = +1 L̃−−
1

λee

mL

λe`

mL

≥ .25

√
16πN

sLe+e−

e−e− → e−`− P1 = P2 = −1 L−−
3

λee

mL

λe`

mL

≥ .13

√
16πN

sLe+e−

P1 = −P2 = ±1 L−−
2µ

λee

mL

λe`

mL

≥ .61

√
16πN

sLe+e−

If the positrons cannot be polarized, the e+e− bounds are
worsened by a factor

√
2.

The bounds at 95% confidence level are obtained by
setting χ2

∞ = 3.84 and N = 9.15. Note that the reac-
tions which are allowed or forbidden within the realm of
the standard model all yield similar results. Indeed, al-
though the allowed reactions need much more anomalous
events to be statistically relevant, this number of anoma-
lous events is very much enhanced by the interferences
with the standard model channels.
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4.3 Direct signals

If the center of mass energy of the collider is sufficient to
produce bileptons, their decay widths becomes an issue
of importance. As we ignore self-interactions and assume
the scalars do not develop a vacuum expectation value,
the bileptons cannot decay weakly into a single or a pair
of gauge bosons. Therefore, the leptonic two-body decay
modes are dominant. Setting all lepton masses to zero, the
scalar bilepton widths are

Γ = A
mL

8π

∑
ij

λ2
ij , (102)

where A = 1/2, 1, 1/3, 2 for L1, L̃1, L2µ, L3 respectively
and the sum runs over all elements of the coupling con-
stants matrix (i, j = e, µ, τ). The doubly-charged vector
width agrees with the width computed in [29] and dis-
agrees with [80], while the doubly-charged scalar widths
agree with [20,35,36] and disagree with [8].

If the indirect searches from experiments below the real
production threshold have been unsuccessful, the leptonic
couplings are unlikely to exceed 0.2 and one can safely
state that the total bilepton width ΓL is narrow:

ΓL ≤ 10−2mL . (103)

Of course, this argumentation does not directly apply to
the neutral and singly-charged bileptons and may break
down for some perverse choices of coupling matrices. We
ignore this possibility here.

4.3.1 e−e− scattering

As depicted in Fig. 10, a doubly-charged bilepton can be
produced in e−e− collisions (78) and subsequently decay
into a pair of leptons [79]. The corresponding polarized
cross sections for the production and decay of scalars or
vectors is obtained by replacing the s-channel propagator
in (95,96) by a Breit-Wigner resonance with the correct
width (102). On the resonance s = m2

L, we may ignore
other possible channels and find the cross sections

σ(e−e− → `−`′−, J = 0)

=
1 + P1P2

2
32π
m2

L

(
λeeλ``

′∑
ij λ

2
ij

)2

(104)

σ(e−e− → `−`′−, J = 1)

=
1 − P1P2

2
48π
m2

L

(
λeeλ``

′∑
ij λ

2
ij

)2

, (105)

where ``′ = e, µ, τ . The total number of events expected
on any bilepton peak is thus of the order of

n = Lσ ≈ 107 L[fb−1]
m2

L[TeV2]

(
λeeλ``

′∑
ij λ

2
ij

)2

, (106)

Fig. 10. Lowest order Feynman diagram for the production
of a doubly-charged bilepton L−− in e−e− collisions. The pro-
duced bilepton can be either a scalar L̃−−

1 , L−−
3 or the vector

L−−
2µ

where the last factor is less or equal to one. In any case,
whatever finite value it assumes, a spectacular resonance is
thus sure to be observed [29]. Note also how conveniently
a beam polarization flip can discriminate between scalar
and vector bileptons.

If the leptonic couplings are so small, that the bilepton
width drops far below the beam energy spread, the signal
will be attenuated accordingly. Still, the rates remain sub-
stantial, even for minute leptonic couplings [82].

This reaction is so spectacular and unavoidable, that
we do not need to consider the production of doubly-
charged bileptons in the other linear collider modes.

It has also been advocated [88] to study the cross-
channel flavour violating reaction µ+e− → µ−e+, if some-
day a muon and an electron collider can be combined.

4.3.2 e−γ scattering

In principle, doubly-charged bileptons can be produced
in e−γ collisions (82) with substantial cross sections [40].
However, these processes cannot compete with the reso-
nant production in e−e− collisions (78). A singly-charged
bilepton, though, can also be produced in e−γ scattering
(81) as depicted in Fig. 11. As these bileptons decay into a
lepton and a neutrino, the signal to be tagged is a lepton
and missing energy. The analysis is more complex than in
e−e− scattering, because

– one has to fold the cross sections (107–109) over the
photon energy and polarization spectra [84];

– there is no resonance and the signal is hence weak at
threshold;

– the standard model backgrounds from W− or Z0 pro-
duction and subsequent leptonic or invisible decays are
substantial.

The polarized differential cross sections for the pro-
duction of scalar, vector or Yang-Mills fields are given by

dσ(e−γ → ν̄L−)
dt

=
2πα2

s2
λ2

e2
1 − Pe

2
−u

s(t−m2
L)2[

1 − Pγ

2
t2 +

1 + Pγ

2
m4

L

]
(107)

dσ(e−γ → ν̄L−
µ , κγ = 0)

dt

=
2πα2

s2
λ2

e2
1 + Pe

2
1

4m2
Ls(t−m2

L)2
(108)
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Fig. 11. Lowest order Feynman diagrams for the associate pro-
duction of a singly-charged bilepton L− and an anti-neutrino
in e−γ collisions. The produced bilepton can be either a scalar
L−

1 , L−
3 or the vector L−

2µ. In the case of the L−
1 , the neutrino

cannot be of the electron type

{
1 − Pγ

2
u
[
8um4

L − tu(s− 8m2
L) − 2m2

L(s− 2m2
L)2
]

−1 + Pγ

2
[
s3t+ 2m2

L(s− 2m2
L)2
]}

dσ(e−γ → ν̄L−
µ , κγ = 1)

dt

=
2πα2

s2
λ2

e2
1 + Pe

2
−2u

s(t−m2
L)2

(109)[
1 − Pγ

2
(s−m2

L)2 +
1 + Pγ

2
(u−m2

L)2
]
.

For completeness, we also mention the integrated cross
sections for both the singly- and doubly-charged bileptons
and for any value of the electric anomalous coupling κγ .
Defining

x =
m2

L

s
, (110)

they are given by

σ(J = 0) =
πα2

2s
λ2

e2
1 ± Pe

2
× (111){(− (3 + 4Q) +
(
7 + 8Q+ 8Q2)x) (1 − x)

+4Q (Q− (2 +Q)x) x lnx

−2 (1 +Q)2
(
1 − 2x+ 2x2) ln

m2
`/s

(1 − x)2

± Pγ

[(− (7 + 12Q+ 4Q2)+ 3x
)

(1 − x)

+4Q2 x lnx

−2 (1 +Q)2 (1 − 2x) ln
m2

`/s

(1 − x)2
]}

σ(J = 1) =
πα2

8m2

λ2

e2
1 ± Pe

2
× (112){((

1 + 30κ+ κ2)Q2 +
(
8 − 16(1 + κ)Q− (1 − κ)2Q2)x

+8
(
7 + 8Q+ 8Q2)x2) (1 − x)

−4Q
(
(1 − κ)2Q+ (8(1 + κ) + (1 − κ)(3 + κ)Q)x

−8Qx2 + 8 (2 +Q)x3) lnx

−16 (1 +Q)2
(
1 − 2x+ 2x2) x ln

m2
`/s

(1 − x)2

± Pγ

[(−3(1 − κ)2Q2 + (40 + 16(3 − κ)Q

+(63 + 34κ− κ2)Q2)x+ 24x2) (1 − x)

−4Q
(−(3 + 6κ− κ2)Q+ 8 (3 + κ+Q)x

)
x lnx

+16 (1 +Q)2 (1 − 2x)x ln
m2

`/s

(1 − x)2
]}

,

where κ = κγ and m` = mµ,mτ is the mass of the u-
channel charged lepton exchanged in the production of a
doubly-charged bilepton. The unpolarized expressions for
the associated electron production are given in [40].

The Z0 background is entirely confined in the region
of phase space where the energy E` and polar angle θ` of
the single emerging lepton are contained within:

E` >
ymins−m2

Z√
s [(1 − cos θ`) + ymin(1 + cos θ`)]

, (113)

where y = Eγ/Ee is the energy fraction of the photons.
The exact value of its minimum can be tuned by chang-
ing the distance between the conversion and interaction
points. In the following we assume ymin = .5.

Similarly, most of the W− events are located in the
region of phase space where

E` <
m2

W y
√
s

y2s(1 + cos θ`) +m2
W (1 − cos θ`)

. (114)

Since the vector bilepton L−
2µ couples to right-handed

electrons, polarizing accordingly the electron beam will
result into a further suppression of the W− background.
Unfortunately, the scalar bileptons L−

1 and L−
3 will need a

left polarized electron beam and will thus have to compete
with the large W− background.

To gauge the discovery potential of e−γ collisions, we
have plotted in Fig.12 for the scalar bilepton L−

1 and sev-
eral collider center of mass energies the χ2

∞ = 1 boundary
in the (λ,mL) plane of the Cramér-Rao limit [87] (cf. Ap-
pendix B)

χ2
∞ = L

∫
dyP (y)

∫
d cos θ`

(
dσ(λ)
d cos θ`

− dσ(λ = 0)
d cos θ`

)2

dσ(λ = 0)
d cos θ`

.

(115)
The photon energy spectrum P (y) is given in [84] and the
electron-photon center of mass energy is √

seγ =
√
ysee.

To obtain these results we have included all decay chan-
nels of the bileptons and have made the following realistic
assumptions:

Le+e− = 20 fb−1 (116)
|Pe| = 90%
|Plaser| = 100%
.5 ≤ y = Eγ/Ee ≤ .83
θ` ≥ 5o

E` ≥ 10 GeV ,
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Fig. 12. Smallest observable scalar bilepton L−
1 couplings to

leptons at the one standard deviation level. as a function of
the bilepton mass in e−γ collisions. The collider’s e+e− center
of mass energies are .5, 1, 2, 3 and TeV from left to right. The
other parameters used are given in (116)

where θ` and E` are the polar angle and energy of the
emerging lepton.

Similar plots are obtained for the vector bileptons. In
general, these curves are closely osculated by the relation

∑
`

(
λe`

1

mL/TeV

)2

=
∑

`

(
λe`

3

mL/TeV

)2

= .15
χ2

∞
L/fb−1

(mL ≤ .6
√
see) (117)∑

`

(
λe`

2

mL/TeV

)2

= .03
χ2

∞
L/fb−1

(mL ≤ .3
√
see) , (118)

where χ2
∞ is the required number of standard deviations, L

is the integrated luminosity and ` = e, µ, τ . These scaling
relations provide a convenient means to gauge the bilepton
discovery potential of e−γ scattering.

Although the relations (117,118) are only valid for
bilepton masses lighter than 60% or 30% of the collider
energy, heavier bileptons with stronger couplings can also
be probed up to the kinematical limit mL ' .91

√
see.

Single bilepton production can also take place via the
same submechanism with quasi-real electrons in γγ colli-
sions [40] with quasi-real photons in e+e− [81,40] or e−p
[42] collisions. As expected, the cross sections are accord-
ingly smaller. It is straightforward to translate the results
of [42] for doubly-charged scalar bileptons ligther than

Fig. 13. Lowest order Feynman diagrams contributing to
e+e− → L+L− scattering, where the final state bileptons can
be either the scalars L−

1 , L−
3 or the vector L−−

2µ

150 GeV, into the approximate HERA exclusion range
λ <∼ 0.65mL [TeV].

4.3.3 e+e− scattering

Doubly-charged bileptons can in principle be pair-produced
in e+e− scattering (80) [20,35,36,81], but these processes
can under no circumstances compete with the resonant
production in e−e− collisions (78). However, the pair-
production of singly-charged bileptons (79) may become
interesting if their couplings to leptons turn out to be too
small to be observed in e−γ scattering (81). Indeed, as de-
picted in the Feynman diagram of Fig. 13, bileptons can
still be produced thanks to their couplings to the neutral
gauge bosons (8,9).

The signal will consist of 2-lepton events with missing
energy. The standard model backgrounds from W pair
production are substantial, but may be rendered harm-
less in e+e− scattering with right-handed electron beams.
As we shall see shortly, this polarization also significantly
enhances the signal.

Assuming the bileptons couple so weakly to leptons
that their discovery is precluded in e−γ scattering, we can
ignore the t-channel lepton exchange in the e+e− reaction.
Whatever the charge of the produced bileptons, using the
definitions (91,92) the integrated scalar [20,35,36,81] and
vector e+e− cross sections are then

σ(e+e− → LL̄) =
2πα2

3s
Σβ3 (119)

σ(e+e− → LµL̄µ) =
2πα2

3s
Σβ3 1

1 − β2

[
7 − 12κ

+4κ2 − 3β2 + 4κ2 1
1 − β2

]
, (120)

where

β =

√
1 − 4m2

L

s
κ = κγ = κZ (121)

and

Σ = [LL]


 ∑

i=γ,Z0

s

(s−m2
i )
QiLi




2

+[RR]


 ∑

i=γ,Z0

s

(s−m2
i )
QiRi




2

. (122)

We do not know a priori the value of the electroweak
anomalous coupling κ = κγ = κZ in (120). The most
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conservative bounds to be expected from e+e− scattering
on vector bileptons are given, like in (88), by the value of
κ which minimizes the cross section

κmin = −3
2

1 − β2

2 − β2 . (123)

It is only for simplicity, that we assume the electric and
weak anomalous coupling to be equal in (121). It must be
borne in mind that some unfortunate combinations may
suppress the vector cross sections even further. We discard
such a possibility here.

In the limits

|Pe− | = |Pe+ | = 1 m2
Z � s sin2 θw =

1
4

(124)
the scalar and vector cross sections are then given by

σ(e+Re
−
R → L+L−) =

32πα2

27s
β3 (125)

σ(e+Le
−
L → L+L−) =

1
4
σ(e+Re

−
R → L+L−)

σmin(e+Re
−
R → L+

µL
−
µ ) =

8πα2

3s
β3 β

3(5 − 4β2 + 3β4)
(1 − β2)(2 − β2)

σ(e+Le
−
L → L+

µL
−
µ ) = 0 . (126)

If the positrons cannot be polarized, these cross sections
are to be divided by 2.

Assuming the luminosity scaling law (71) and all bilep-
ton decay channels to be observed, we plot in Fig. 14
the number of expected bilepton events in right-polarized
e+e− collisions as a function of the ratio of bilepton mass
to the center of mass energy. Clearly, a significant signal
is expected, even close to the kinematical limit.

4.3.4 γγ scattering

In principle bileptons can also be pair-produced in γγ colli-
sions (80,84). However, the doubly-charged bileptons will
be much better observed in e−e− scattering. Similarly,
e−γ collisions or e+e− annihilations with a right-handed
electron beam will offer a better signal to background ra-
tio. Moreover, the γγ center of mass energy cannot exceed
ca 83% of the e+e− collider energy. For all these reasons,
γγ collisions are only of marginal interest for discovering
bileptons, and we do not consider these reactions here.

4.4 High-energy summary

The present and prospective high-energy bounds on L = 2
bileptons are summarized in Tables 8 and 9. Only the
limits from the experiments which provide the best con-
straints on the bilepton masses and couplings to leptons
are listed. All bounds are stated at the 95% confidence
level.

The LEP experiments constrain all bileptons to have
a mass exceeding at least 44 GeV, except for the doubly-
charged vector L−−

2µ which couples very weakly to the Z0

Fig. 14. Mass dependence of the number of pair-produced
singly-charged bileptons in e+e− annihilations, assuming the
luminosity scaling law (71)

bosons and could still be as light as 38 GeV. These bounds
are totally model-independent.

In high-energy Bhabha and Møller scattering virtual
doubly-charged bileptons may induce corrections or even
lepton flavour violations. The non-observation of such ef-
fects at a linear collider of the next generation will allow
stringent limits to be set on the ratio of the leptonic cou-
pling to the mass λ/mL. This will substantially improve
the low-energy bounds. Moreover, the discovery prospects
are to a much lesser extent dependent on the structure of
the flavour coupling matrix.

If the collider center of mass energy reaches the mass of
a doubly-charged bilepton, it will show up as a spectacular
resonance in e−e− scattering. This is therefore the privi-
leged mode for discovering and studying the properties of
doubly-charged bileptons.

Singly-charged bileptons can be produced both in e+e−
and e−γ scattering. Provided the collider energy is suffi-
cient to pair-produce bileptons, the e+e− mode can probe
bileptons which couple very weakly to leptons and hence
provide model-independent mass limits. Heavier bileptons
can be searched for in e−γ reactions, if their couplings to
leptons are not too weak.

Once bileptons are produced on-shell, the information
gathered from their cross sections and their decay modes
will unambiguously determine a large portion of the cou-
pling constant matrix.

Unless a Z ′ resonance is directly accessible, standard
high-energy experiments have no prospects for seeing the
neutral bilepton L0

3.
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Table 8. Best explorable limits on the coupling to mass ratio of the doubly-charged bileptons in indirect
high-energy e−e− and e+e− searches. These 95% confidence bounds are given for the three flavour
coupling models (4–7). We assume unpolarized positron beams and use the luminosities (71,100) for the
e+e− and e−e− mode
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Table 9. Best explored or explorable bilepton masses and couplings in direct high-energy
searches. These are at least 95% confidence bounds. The future collider limits assume the
validity of the luminosity scaling law (71)
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5 Conclusion

We have derived the most general renormalizable bilepton
lagrangians consistent with the SU(2)L ⊗ U(1)Y symme-
try. Concentrating on those 7 bileptons which carry lep-
ton number L = 2, we have provided a compilation of the
present constraints from low-energy experiments, and the
present and future bounds which may be set by colliders.

The model independent low-energy limits are listed in
Table 3 and 4. They usually involve flavour non-diagonal
couplings, so their implications are difficult to judge. We

make three representative assumptions about the struc-
ture of the coupling constant matrices, and present the
low-energy bounds with these assumptions in Tables 6, 5
and 7. Bileptons with masses above 100 GeV to 10 TeV,
and gauge or Yukawa strength couplings would in general
be consistent with the data.

Future high-energy e+e− and e−e− experiments at a
linear collider of the next generation may significantly ex-
tend the present low-energy bounds, as is summarized in
Table 9. Moreover, if real bileptons can be produced on-
shell the observation of their decay modes will provide
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unambiguous information about the structure of the cou-
pling constant matrix. In particular, the e−e− linear col-
lider mode is ideally suited for searching doubly-charged
bileptons, whereas singly-charged bileptons can be well
sought for in e+e− or e−γ collisions.
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Appendix A Four-fermion vertices

Calculating bounds using 4-fermion vertices assumes that
the bilepton masses are heavier than the energy scale of
the experiment, so that the momentum of the bilepton in
the propagator can be neglected

1
p2 −m2

L

→ −1
mL

2 (A.1)

The four-fermion vertices listed in the second column
of Table 2 are easily derived from the lagrangian (3). They
are of the form

aλ2

m2
L

(ψ̄Γχ)(ε̄Γ δ) , (A.2)

where ψ, χ, ε and δ are chiral fermions, the Γ s are either
1 or γµ, and a includes all the factors of 2.

The form (A.2) may not convenient for comparing bilep-
ton rates with standard model ones. However, by appro-
priate Fierz transformations and transpositions of matrix
elements, the relevant bilepton four-fermion vertices can
all be brought in the standard model-like (V ±A)(V ±A)
or (V +A)(V −A) forms. For this operation the following
relations turn out to be useful

(ācγµPL,Rb
c) = −(b̄γµPR,La) (A.3)

(āPLb)(c̄PRd) = −1
2
(āγµPRd)(c̄γµPLb) (A.4)

(āγµPL,Rb)(c̄γµPL,Rd) = (āγµPL,Rd)(c̄γµPL,Rb) .(A.5)

Note that scalar and vector bileptons do not induce
any tensor matrix elements. The only way to generate
matrix elements of the form (ψ̄σµνχ)(ε̄σµνδ) from the ex-
change of a scalar or vector particle is by Fierz-rearranging
a scalar induced four fermion vertex where the scalar cou-
pled to left-handed fermions at one end, and right-handed
at the other (operators of the form (ψ̄Rχ)(ε̄Rδ)). The
standard model symmetries do not allow scalar bileptons
with such interactions.

Appendix B The Cramér-Rao limit

The asymptotic resolution [85] with which a reaction can
set bounds on a given parameter, say the lepton-bilepton

coupling λ, is given by the Cramér-Rao limit

χ2
∞ = L

∫
dΩ

(
dσ(λ)
dΩ

− dσ(0)
dΩ

)2

dσ(0)
dΩ

, (B.1)

where σ(0) is the standard model expectation and dΩ is a
phase space element. The N standard deviation exclusion
bounds for λ are obtained by setting χ2

∞ = N2 in (B.1).
If the systematic errors are small, this limit is closely

approached by a maximum likelihood estimator. Indeed,
defining the probability density

p =
1
σ

dσ

dΩ
, (B.2)

for small values of λ (B.1) can be rewritten

χ2
∞ = nλ2

∫
dΩ

1
p

(
∂p

∂λ

)2
∣∣∣∣∣
λ=0

= λ2
〈

−∂2 lnL
∂λ2

∣∣∣∣
λ=0

〉
,

(B.3)
where n is the total numebr of events. Equation (B.3)
defines the maximum likelihood estimator [51], where

L =
n∏

i=1

p(Ωi) (B.4)

is the maximum likelihood function.
To prove that this is indeed the Cramér-Rao minimum

variance bound, we set χ2
∞ = 1 in (B.3). Discretizing into

infinitesimal phase space bins labeled i, we have p(Ωi) =
ni/n and we obtain for the inverse dispersion of λ

D(λ)−1 =
1
λ2

∣∣∣∣
χ2∞=1

=
∑

i

1
ni

(
∂ni

∂λ

)2

. (B.5)

By definition, ni is the average number of events in bin i.
The observed number of eventsNi in this bin is distributed
according to Poisson statistics, i.e.,

pi =
ni

n
=
e−ninNi

i

Ni!
(B.6)

is the probability to find Ni events in bin i. Assuming
there are no bin-to-bin correlations, we have

< Ni > = ni (B.7)
< (Ni − ni)(Nj − nj) > = δijni (B.8)

and we can rewrite (B.5)

D(λ)−1 =
∑
i,j

〈(
Ni

ni
− 1
)(

Nj

nj
− 1
)〉

∂ni

∂λ

∂nj

∂λ

=

〈(∑
i

(
Ni

ni
− 1
)
∂ni

∂λ

)2〉
. (B.9)
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This is nothing but the Cramér-Rao minimum variance
bound

D(λ)−1 =

〈(∑
i

∂ ln pi

∂λ

)2〉
. (B.10)

To derive this result, we only assumed the absence of bin-
to-bin correlations in (B.8). Note that no assumption con-
cerning the population of the bins is necessary. Equation
(B.1) provides thus a convenient means for computing the
Cramér-Rao bound of an experiment, which in practice
can be closely approached by the maximum likelihood es-
timator if the systematic errors are small. In the presence
of real data the maximum likelihood function (B.4) can
easily be evaluated with all experimental resolutions and
efficiencies folded in [86].

A more detailed treatment of this issue is provided in
[87].
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